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We consider laminar displacement flows in narrow eccentric annuli, oriented
horizontally, between two fluids of Herschel–Bulkley type, (i.e. including Newtonian,
power-law and Bingham models). This situation is modelled via a Hele-Shaw
approach. Whereas slumping and stratification would be expected in the absence
of any imposed flow rate, for a displacement flow we show that there are often
steady-state travelling wave solutions in this displacement. These may exist even at
large eccentricities and for large density differences between the fluids. When heavy
fluids displace light fluids, annular eccentricity opposes buoyancy and steady states
are more prevalent than when light fluids displace heavy fluids. For large ratios of
buoyancy forces to viscous forces we derive a lubrication-style displacement model.
This simplification allows us to find necessary and sufficient conditions under which
a displacement can be steady, which can be expressed conveniently in terms of a
consistency ratio. It is interesting that buoyancy does not appear in the critical
conditions for a horizontal well. Instead a competition between fluid rheologies and
eccentricity is the determining factor. Buoyancy acts only to determine the axial length
of the steady-state profile.

1. Introduction
The aim of this paper is to derive conditions under which displacement flows of

Herschel–Bulkley fluids along a narrow eccentric annulus may either advance as a
steady travelling wave or stratify gravitationally. The annulus is oriented horizontally,
perpendicular to the direction of gravity, see figure 1. The motivation for the study
comes from the industrial process of primary cementing, used to complete oil wells
prior to production. Since the early 1990s there has been a great increase in the
numbers of oil wells constructed horizontally, primarily to increase productivity by
aligning the well with the reservoir. The increase in length of horizontal wells was
made possible by advances in directional drilling technology. The early 1990s saw
a continual increasing of the horizontal reach of wells up to around 10 km, see
e.g. the detailed description in Payne, Wilton & Ramos. (1995). The 10 km barrier
was broken in a number of wells drilled at Wytch Farm, UK, in around 2000. The
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Figure 1. Schematic of the primary cementing displacement in a horizontal well: process
schematic.

limits of ‘extreme’ extended reach wells are now being pushed into the 15 − 20 km
range, but such wells are unusual and do not necessarily bring productivity benefits
proportional to their technical challenges. In the present day it is routinely feasible to
construct wells with horizontal extensions in the 7 − 10 km range.

Many of the other well construction technologies have lagged behind in this surge
in construction of long horizontal wells, cementing being one of these. Although many
of the potential problems of cementing horizontal wells were identified some time
ago, e.g. Sabins (1990), the industrial response has been largely through technological
advances, rather than by developing understanding of physical fundamentals that may
affect the process. In this paper we adopt the latter approach and consider the fluid
dynamics of displacement during primary cementing of horizontal wells. The primary
cementing process involves the displacement of one non-Newtonian fluid by another,
pumped axially along the annulus at a constant imposed flow rate. The flows that we
consider are laminar and the annuli considered have annular gaps that are narrow
with respect to both circumferential and axial length scales. Thus, a Hele-Shaw
modelling approach is appropriate and we adopt a two-dimensional model derived
by Bittleston, Ferguson & Frigaard (2002), outlined in §2. Those unfamiliar with this
process may consult Nelson (1990) for background information.

In cementing near-vertical wells it is advantageous to maintain a positive density
and viscosity difference between successive fluid stages pumped. This helps to offset
the destabilizing effects of the annulus eccentricity and has long been advocated in the
industrial literature, although without a firm scientific basis. In the sequence of papers
Pelipenko & Frigaard (2004a–c) a more rational understanding of the displacement
dynamics in near-vertical annuli was developed using a Hele-Shaw model. It was
shown that under certain process conditions it is possible to obtain steady travelling
wave displacement front solutions that are stable. Conditions were derived that
predict the occurrence of these steady solutions and, in certain simple situations,
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analytic expressions are found for their shapes. Here this predictive understanding
is extended to displacements in horizontal annuli. For brevity the reader is referred
to the introductory sections of the above papers for a review of related work and
industrial motivation.

In primary cementing, see Nelson (1990), successive casings or liners are fitted
within one another, thus decreasing the size of the new hole that can be drilled. For
this reason, longer extended reach wells tend to be of smaller diameter and also tend
to be cemented increasingly in laminar flow regimes. This latter is due to smaller
annular gap sizes and to the increased risk of high frictional pressures fracturing the
surrounding formation at high flow rates. Thus, for modelling the fluid mechanics of
the displacement process, long horizontal wells are the process situation that offers
the widest range of validity of the Hele-Shaw approach.

In the absence of a density difference between fluids, displacements in horizontal
annuli are the same as in vertical annuli. However, drilling fluids are typically 100−600
kg/m−3 less dense than cement slurries, and a chemically compatible spacer fluid
designed to have intermediate density and rheological properties typically separates
these two fluids. Therefore density differences are inevitable in the cementing of
horizontal wells. A number of questions arise that are both of fluid mechanic interest
and of practical industrial relevance.

(a) Which dimensionless groups govern whether or not the flow will become
stratified? In the worst case, stratification could allow the displacing fluid to completely
by-pass the displaced fluid, rendering the displacement ineffective.

(b) With a density difference, is it possible to have steady travelling wave
displacement fronts? What characteristics of these fronts can be predicted: shape,
stability, etc?

(c) What are the effects of an increased flow rate on a horizontal displacement?
Finally, we might suspect that the typical shapes of displacement fronts are

different in horizontal annuli than in vertical annuli. In vertical annuli, eccentricity
tends to promote dispersive spreading on the wide side of the annulus, where the
fluid velocities are larger. This effect is countered by positive viscosity and density
differences, eventually resulting in steady travelling wave displacement fronts. In
eccentric horizontal annuli the heavy steel casing is likely to lie to the lower side of
the borehole. It appears that two types of mechanically stable separated flow may
develop, see figure 2. First, suppose that there is a positive density difference strong
enough to force the heavier displacing fluid azimuthally around to the narrow side
of the annulus. In this case a heavy finger of displacing fluid advances along the
bottom of the annulus ahead of the mean flow and we have the configuration of
figure 2(a). Second, suppose there is no density difference or that the displacing fluid
is lighter than the displaced fluid (figure 2b). In this case we may expect a ‘classical’
form of separated flow to develop in which the displacing fluid advances ahead along
the wide upper side of the annulus. These two basic types of flows can also be
found experimentally. As an illustration, figure 3 shows an example result from recent
laboratory experiments, with slumping along the bottom.

The aim of our paper is to answer some of the above questions and to develop a
qualitative and quantitative understanding of these displacement flows. Our main tool
for this is a simplified version of the Hele-Shaw displacement model from Bittleston
et al. (2002), restricted to a well section of constant inclination, eccentricity and
radii, which we outline in §2. We then explore some typical results of numerical
simulations conducted with the two-dimensional model (in §3). The two-dimensional
simulations are relatively time consuming as it is necessary to resolve potential regions
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Figure 2. Schematic of mechanically stable separated flow configurations in a horizontal
displacement: (a) heavy fluid displacing; (b) light fluid displacing.

(b)

(a)

Figure 3. An example of slumping along the bottom of a horizontal concentric annulus: fluid
1 (ρ̂1 = 1398 kg/m−3, κ̂1 = 6.24 Pa s, n1 = 1), coloured black with dye, displaces fluid 2
(ρ̂2 = 1363 kg/m−3, κ̂2 = 0.76 Pa s, n2 = 1), moving from right to left at mean speed 1.6 mm
s−1. Each subfigure shows a side view and a view from above the annulus (centrebody is grey);
image (b) is taken after image (a), after 116.5 ml of fluid 1 has been pumped.

of unyielded fluid in the annulus, which is achieved using an iterative approach; see
Pelipenko & Frigaard (2004b). Another difficulty with the two-dimensional model is
that these flows are governed by 11 dimensionless parameters, describing the rheology,
density/buoyancy and well geometry, which makes broad parametric study of the flow
regimes near-impossible. A last problem is that many of the displacement flows extend
along the annulus axially a significant distance, which of course increases the size
of numerical domain (and hence computational cost) needed for two-dimensional
simulation.

The above factors motivate our development in §4 of a lubrication/thin-film model.
Elongation of the interface is found when |b̃| � 1, where b̃ denotes the ratio of
buoyancy and viscous forces. In this limit, an evolution equation for the propagation
of the volumetric interface location may be derived, which is a one-dimensional quasi-
linear advection–diffusion equation. This equation may be solved relatively quickly
but may also be analysed. We show that it is possible to predict the conditions
under which a steady travelling wave solution can be found for the lubrication limit.
Necessary and sufficient conditions for the existence of steady-state travelling wave
solutions are given and we survey the (parametrically simpler) set of steady interface
shapes and stability maps. The paper closes with a summary of results and discussion
of consequences in §5.
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Figure 4. Geometry of the narrow eccentric annulus, mapped to the Hele-Shaw cell geometry:
(a) near-horizontal annulus; (b) annular gap geometry and eccentricity; (c) unwrapped
half-annular and half-gap Hele-Shaw geometry.

2. Hele-Shaw modelling of cementing displacements
We consider the model developed by Bittleston et al. (2002), simplified so that the

annulus is locally uniform in the axial direction, i.e. over a length scale that is long in
comparison to the azimuthal scale, and only two fluids will be considered. The model
and all parameters used in this paper are dimensionless, with dimensional parameters
only referred to to highlight the physical meaning of certain parameters. In this case,
any dimensional quantity will be distinguished by a caret symbol, e.g. ρ̂1. A summary
of the scaling used is given just before §2.1 below. Further details may be found in
Bittleston et al. (2002) or Pelipenko & Frigaard (2004a).

The axis is at a fixed angle of inclination, β ≈ π/2, to the vertical, see figure 4.
As in the model used in Bittleston et al. (2002) and Pelipenko & Frigaard (2004a)
averaging across the narrow annular gap eliminates radial variations, thus effectively
unwrapping the annulus into a Hele-Shaw cell, see figure 4. The dimensionless spatial
coordinates are (φ, ξ ) ∈ (0, 1) × (0, Z). φ is the azimuthal coordinate with φ = 0
denoting the wide side of the annulus and φ = 1 the narrow (lower) side. The flow
is assumed symmetric about φ = 0, and thus only half the annulus is considered.
This assumption implies that the narrow side of the annulus is always lying on the
low side of the well. The ξ coordinate measures axial depth along the annulus in the
direction of the mean flow, see figure 4. Z denotes the length of the section of well to
be cemented. Z � 1, since the length scale used for scaling the equations is one half
the mean circumference, typically ≈ 0.5 m, whereas lengths of cemented sections are
in the 100 − 1000 m range. The half-gap width H varies only with φ and is defined
by

H (φ) = 1 + e cos πφ, (2.1)

which is a narrow gap approximation. Here e ∈ [0, 1) is the annulus eccentricity (see
figure 2); e = 0 corresponds to a concentric annulus, e = 1 implies contact between
the casing and outer wall, on the narrow side of the annulus.
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The annulus is initially full of fluid 2, which is displaced by fluid 1. Although the
fluids are miscible, the time scale for molecular diffusion to have significant effects is
typically much longer than other process time scales. Thus the interface is essentially
advected, and we consider two standard ways to model its motion. First, we consider
a fluid concentration formulation in which c denotes the concentration of fluid 1,
assumed not to vary across the annular gap width. The gap-averaged concentration
equation (minus any diffusion) is simply:

∂

∂t
[Hc] +

∂

∂φ
[Hv c] +

∂

∂ξ
[Hw c] = 0, (2.2)

where the averaged velocity components in the (φ, ξ )-directions are (v, w). A second
approach, that is more convenient for our later analysis, is to track the interface via
a gap-averaged kinematic equation; this approach is described in §2.1.

The fluids are incompressible so that (v, w) are written in terms of a stream function
Ψ where

∂Ψ

∂φ
= Hw,

∂Ψ

∂ξ
= −Hv. (2.3)

Boundary conditions for (2.2) and (2.3) are symmetry of concentration at φ = 0, 1,
and specification of any inflowing fluid concentrations at the ends, ξ = 0, Z, i.e. c = 0
or c = 1, accordingly.

The underlying fluids are modelled as Herschel-Bulkley fluids: m = 1/n is the
inverse power law index, τY is the yield stress and κ is the consistency. For a
Newtonian fluid m = 1 and τY = 0. We assume that the fluids are shear-thinning
throughout (m � 1), since this is usual with oil field fluids. In the concentration
approach, these fluid properties will depend on c, as will the fluid density, ρ.

The stream function is found from the elliptic field equation

∇·[S + f ] = 0, (2.4)

that is derived by cross-differentiating the relevant Darcy law to eliminate the pressure.
This is the standard procedure in a Hele-Shaw flow law if one wishes to work with
the stream function and not the pressure. For the stream function equation (2.4),
boundary conditions are

Ψ (0, ξ, t) = 0, Ψ (1, ξ, t) = 1, (2.5)

∂Ψ

∂ξ
(φ, Z, t) = 0,

∂Ψ

∂ξ
(φ, 0, t) = 0. (2.6)

The relevant closure law is derived in Bittleston et al. (2002), from which

S =

[
χ(|∇Ψ |) + τY /H

|∇Ψ |

]
∇Ψ ⇐⇒ |S| >

τY

H
, (2.7)

|∇Ψ | = 0 ⇐⇒ |S| �
τY

H
, (2.8)

where the function χ = χ(|∇Ψ |; H, τY , κ, m) is defined implicitly from the relation:

|∇Ψ | =

⎧⎨
⎩

0 (χ � 0),
Hm+2

κm(m + 2)

χm+1

( χ + τY /H )2

[
χ +

(m + 2)τY

(m + 1)H

]
(χ > 0).

(2.9)

Underlying (2.7)–(2.9) is a model of the flow of a Herschel-Bulkley fluid along a
plane channel in the direction of the modified pressure gradient; see Appendix A
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for an outline of the model. If |S| � τY /H then |∇Ψ | = 0, and there is no fluid
flow. Physically the modified pressure gradient |S| is not strong enough to overcome
the yield stress in that section of the annulus. At such points S is bounded but is
indeterminate. At those points where |∇Ψ | > 0 the fluid is flowing. All buoyancy
terms have been collected together in (2.4) in the term f :

f =

(
ρ(c) cos β

St∗ ,
ρ(c) sin β sin πφ

St∗

)
, (2.10)

where St∗ is the global Stokes number for the flow, defined by

St∗ =
µ̂∗ŵ∗

ρ̂∗ĝ(d̂∗)2
.

To recover dimensional quantities, note that the axial and azimuthal velocities have
been scaled with the mean flow velocity, ŵ∗, lengths with the half-circumference πr̂∗

a

(here r̂∗
a is the mean radius). A rate-of-strain scale is obtained by dividing ŵ∗ by the

half-gap width, d̂∗ = (r̂o − r̂i)/2, and this used with the constitutive laws to derive a
viscosity scale, µ̂∗, defined as the maximal effective viscosity at the mean shear rate.
The pressure gradient balances with the leading-order shear-stress scale, as always in
a Hele-Shaw flow. Finally, ρ̂∗ is the density scale (defined as the larger of the two
unmixed fluid densities), and ĝ the gravitational acceleration.

2.1. Interface tracking

The formulation with (2.2) requires that the interface is interpreted as a contour of
the concentration field, e.g. c̄(φ, ξ, t) = 0.5, and also that closure laws be specified
for the mixture fluid properties, i.e. as functions of c̄. The domain is divided into two
fluid domains: Ω1 for the displacing (lower) fluid 1, and Ω2 for the displaced (upper)
fluid 2, in each of which (2.4) is replaced by

∇·S1 = 0, (φ, ξ ) ∈ Ω1, (2.11)

∇·S2 = 0, (φ, ξ ) ∈ Ω2, (2.12)

with S1 and S2 defined as in (2.7)–(2.8), with properties ρ1, τ1,Y , κ1, m1 in fluid 1
and ρ2, τ2,Y , κ2, m2 in fluid 2. The interface is denoted by φ = φi(ξ, t), and satisfies
the kinematic condition:

∂φi

∂t
+ w̄

∂φi

∂ξ
= v̄. (2.13)

The leading-order continuity conditions at the interface are that the stream function Ψ

and the pressure p are continuous across the interface. Assuming sufficient regularity
of the interface, the former condition enssures that the normal velocity, the derivative
of Ψ along the interface, is well-defined at the interface. Pressure continuity is
expressed in terms of defining the jump in Sk across the interface:[(

Sk,ξ

∂φi

∂ξ
− Sk,φ

)
+

(
ρk sin β sin πφ

St∗
∂φi

∂ξ
− ρk cos β

St∗

)]2

1

= 0. (2.14)

Equation (2.14) also defines the jump in the normal derivative of Ψ across the interface.

3. Horizontal displacement flows
We now start to build our intuition of the types of displacement phenomena that we

are likely to find in laminar horizontal well cementing flows. Treated in full generality,
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we see that displacements are governed by the following 11 dimensionless parameters:
rheology τk,Y , κk , nk , k = 1, 2; density/buoyancy ρk , k = 1, 2, St∗; well geometry, e

and β . For the concentration–advection formulation, all 11 parameters are needed
since intermediate values of c̄ are computed. In addition closure laws are needed for
the rheology and density at intermediate concentrations. Although cumbersome in
terms of the large parameter space, the concentration–advection formulation is the
easiest to deal with computationally, and we present a number of results from this
model below.

For analytical results the interface tracking formulation is more convenient. In this
formulation, ρk , k = 1, 2, and St∗ may be replaced by a buoyancy number b̃:

b̃ =
ρ2 − ρ1

St∗ , (3.1)

as this is the only combination in which these parameters appear in the jump
conditions at the interface. For strictly horizontal wells β = π/2, and thus we are
reduced to the six dimensionless rheological parameters, plus e and b̃.

Here we present a number of results computed using the concentration–advection
formulation. The numerical method used is that described in detail in Pelipenko &
Frigaard (2004b). At a given time step, assuming the concentrations and stream
function are known, we differentiate the stream function to give the velocity field and
advance the concentration one time step. For this we use the FCT scheme, see Zalesak
(1979), on a staggered rectangular mesh. The concentrations are approximated at the
cell centres and the stream function at the corners. Thus partial derivatives of
the stream function along the edges give the required velocity components. Given
concentrations at the new time step, the stream function is computed from (2.4), which
is solved using the augmented Lagrangian approach with the Uzawa-like algorithm.
Computations presented below have been solved with mesh spacings �φ = 1/40 and
δξ = 1/20.

As a test problem, we consider a concentric annulus displacement between two
Newtonian fluids, for which there is a steady travelling wave solution:

ξ − t = − b̃ cos πφ

3π[κ2 − κ1]
+ constant,

see Pelipenko & Frigaard (2004a). Results of the computation for κ1 = 1, κ2 = 0.25,
ρ1 = 1, ρ2 = 0.9, St∗ = 0.05, (=⇒ b̃ = −2), are shown in figure 5. In this and
subsequent plots, the φ-axis points vertically downwards, with the wide side at the
top of each figure and the narrow side at the bottom, as would be the case in a
horizontal well. The direction of flow is always from left to right, in the direction of
increasing ξ .

Figure 5(a) shows the contour c̄(φ, ξ, t) = 0.5 plotted at successive time intervals
�t = 0.5. We start the simulation with the annulus full of fluid 2 for ξ � 1, and
fluid 1 in ξ < 1. We see a quick evolution to a steadily advancing profile. Figure 5(b)
plots the above analytical solution at the same time intervals. Figure 5(c) overlays the
computed and analytical profiles in the latter part of the annulus. We see that the
agreement is good, with similar shapes and a constant offset. If the same example is
repeated with no density difference, a steady planar displacement front is found. The
addition of the positive density difference evidently results in slumping of the heavy
fluid towards the lower side of the well. It is interesting to note that with a significant
buoyancy effect (i.e. |b̃| = O(1)) complete stratification does not occur in this case.
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Figure 5. Test problem, comparing two-dimensional computations with the analytical solution
from Pelipenko & Frigaard (2004a), with parameters: e = 0, β = π/2, τY,k = 0, nk = 1, κ1 = 1,
κ2 = 0.25, ρ1 = 1, ρ2 = 0.9, St∗ = 0.05. (a) The contour c̄(φ, ξ, t) = 0.5 at time intervals
�t = 0.5. (b)The analytical interface position (steady-state solution from Pelipenko & Frigaard
(2004a)), plotted at time intervals �t = 0.5. (c) Comparison of numerical (thin) and analytical
(thick) solutions.

In practice it is possible for the displacing fluid (fluid 1) to be either heavier or
lighter than the displaced fluid. A heavier and more viscous fluid 1 might result
when using a classical design for near-vertical wells, as positive density and viscosity
gradients help a vertical displacement, see Pelipenko & Frigaard (2004c). Regardless
of the wellbore inclination, at some point during a displacement there is always likely
to be a positive density gradient between fluid stages, simply because the density
of cement slurries is typically higher than that of drilling muds. For all positive
density differences (heavy displacing light), we intuitively expect to see slumping of
the displacing fluid to the bottom of the well, as in the test case above.

Although less common, there are also situations in which the displacing fluid may
be lighter, and either more or less viscous. For example, if a wash is pumped ahead
of the cement slurry it will generally be lighter and less viscous than the drilling
mud. Other than this, various lightweight spacer fluids have been used in displacing
and these may be lighter but more viscous than the drilling mud. In either case, the
expected effect of the density difference is to promote stratification, with the light
fluid moving ahead along the top of the annulus.

3.1. Heavy displacing fluids, b̃ < 0

We first consider the more common case, where the displacing fluid is heavier than
the displaced (b̃ < 0). In figure 6 we present results of the same displacement as in
figure 5, but with a mildly eccentric annulus, e = 0.1. The effect of eccentricity is to
promote faster flow on the wide side of the annulus, φ = 0, and in the absence of any
density difference the interface is usually found to advance further along the wide
side than the narrow side. Thus, we can see that there is a competition between the
effects of eccentricity and buoyancy, promoting interfacial advances on the wide and
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Figure 6. Newtonian displacement at St∗ = 0.05 with positive buoyancy gradient in a mildly
eccentric annulus. Parameters: e = 0.1, β = π/2, τY,k = 0, nk = 1, κ1 = 1, κ2 = 0.25, ρ1 = 1,
ρ2 = 0.9. (a) The contour c̄(φ, ξ, t) = 0.5 at time intervals �t = 0.5. (b) The moving-frame
stream function Φ(φ, ξ, t) at t = 15.5, with the contour c̄(φ, ξ, t) = 0.5 (heavy line); contours
are Φ = 0, 0.01, 0.02, 0.03, 0.04, 0.05, 0.06. (c). The moving-frame stream function
Φ(φ, ξ − t, t) at t = 40, with the contour c̄(φ, ξ − t, t) = 0.5 (heavy line); contours are
Φ = 0.01, 0.02, 0.03, 0.04, 0.05.

narrow side respectively. Figure 6(a) plots the evolution of the (interface) contour,
c̄(φ, ξ, t) = 0.5, at time intervals �t = 0.5. The eccentricity–buoyancy competition is
evident: the interface initially slumps then appears to recover slightly. The axial extent
of the steady-state interface is ≈ 0.4, whereas for e = 0 it was ≈ 0.5, i.e. eccentricity
has reduced the extent of slumping along the wellbore axis.

Figure 6(b) plots contours of the moving-frame stream function Φ(φ, ξ, t):

Φ(φ, ξ, t) = Ψ (φ, ξ, t) −
∫ φ

0

H (φ̃) dφ̃, (3.2)

at t = 15.5. The stream function Φ(φ, ξ, t) simply subtracts the effects of a uniform
mean axial velocity field from Ψ (φ, ξ, t), and is appropriate for identifying steady
travelling wave solutions. Figure 6(b) shows an O(1) recirculation zone within the
Φ(φ, ξ, t) = 0 contour. The interface contour, c̄(φ, ξ, t) = 0.5 (heavy line), is overlaid
on the figure and lies within this zone. This large recirculatory zone is responsible
for the slightly transitory behaviour in figure 6(a). The two (near vertical) Φ = 0
contours divide the domain into three regions. In the two end regions Φ(φ, ξ, t) > 0
and the circulation is clockwise. The displacing fluid moves from the wide to narrow
side and the displaced fluid moves from the narrow to wide side. In the central cell
we have Φ(φ, ξ, t) < 0 and the circulation is counter-clockwise, but relatively slow.
This O(1) central recirculation zone is not steady, but contracts slowly during the
displacement, eventually becoming a single line between the wide and narrow sides. To
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Figure 7. Newtonian displacement at St∗ = 0.01 with positive buoyancy gradient in a mildly
eccentric annulus. Parameters: e = 0.1, β = π/2, τY,k = 0, nk = 1, κ1 = 1, κ2 = 0.25, ρ1 = 1,
ρ2 = 0.9. (a) The contour c̄(φ, ξ, t) = 0.5 at time intervals �t = 0.5. (b): The moving frame
stream function Φ(φ, ξ − t, t) at t = 40, with the contour c̄(φ, ξ − t, t) = 0.5 (heavy line);
contours are Φ = 0.01, 0.02, 0.03, 0.04, 0.05, 0.06.

(b)

(a)

0 2 4 6 8 10 12 14 16 18 20
1

0

0 2 4 6 8 10 12 14
1

0

ξ

φ

φ

ξ – t

Figure 8. As figure 7 but with St∗ = 0.002.

avoid computations with a very large mesh, long-time computations are carried out
in a steadily moving frame of reference. Figure 6(c) shows the contours of Φ and the
interface contour , c̄ = 0.5, in the moving frame at t = 40. In this frame of reference
the streamlines and concentration are steady. We observe that buoyancy effects are
dominant with the steady finger advanceing along the bottom of the annulus.

Two further Newtonian fluid computations are presented in figures 7 and 8, in
which the Stokes number is decreased to St∗ = 0.01 and St∗ = 0.002 respectively.
The parameters are otherwise the same as in figure 6. The decrease in St∗ physically
corresponds to a reduction in dimensional flow rate, which reduces viscous stresses.
In the Hele-Shaw model only viscous and buoyant forces are present and balance
each other. Thus, as expected, reducing St∗ amplifies the relative effects of buoyancy
and a slumping flow occurs. Figures 7(a) and 8(b) show the evolution of the interface
contour c̄ = 0.5. Figures 7(b) and 8(b) show the streamlines Φ(φ, ξ − t, t), computed
in the moving frame of reference, after a time t = 40. What is perhaps surprising is
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Figure 9. Non-Newtonian displacement with positive buoyancy gradient in an eccentric
annulus. Parameters: e = 0.2, β = π/2, τY,1 = 0, τY,2 = 1, nk = 1, κ1 = 1, κ2 = 0.25,
ρ1 = 1, ρ2 = 0.9. (a) St∗ = 0.05, contour c̄(φ, ξ, t) = 0.5 at time intervals �t = 0.5. (b)
St∗ = 0.01, contour c̄(φ, ξ, t) = 0.5 at time intervals �t = 0.5. (c) St∗ = 0.01, the moving-frame
stream function Φ(φ, ξ, t) at t = 15.5; contours are Φ = 0, 0.03, 0.06, 0.09, 0.12, 0.15.
(d) St∗ = 0.01, the moving-frame stream function Φ(φ, ξ − t, t) at t = 40, with the contour
c̄(φ, ξ − t, t) = 0.5 (heavy line); contours are Φ = 0.03, 0.06, 0.09, 0.12, 0.15.

that even with this massively increased buoyancy effect, the flow settles to a steady
state, i.e. complete stratification does not occur. However, the steady state does stretch
along the annulus axis a greater distance as St∗ is decreased. In the absence of an
imposed flow rate, we would expect that the flow would stratify.

Two natural questions arise. First, if we keep increasing the relative effects of
buoyancy, in an example such as that in figures 6–8, will we always have a steadystate
travelling wave interface solution albeit extending further along the annulus, or is
there a point at which the fluids stratify? We investigate this limit and the associated
question in §4.

Secondly, we ask whether in all cases buoyancy will be dominant, or can the
slumping motion be arrested via annular eccentricity and/or by rheological effects?
The answer here is yes. In figure 9 we show a non-Newtonian displacement at
eccentricity e = 0.2, with a yield stress in the displaced fluid, τY,2 = 1 (all other
parameters remaining as before). At St∗ = 0.05, figure 9(a) shows the evolution of
the interfacial contour c̄ = 0.5. With the added eccentricity and yield stress, flow
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Figure 10. As figure 9 but with eccentricity, e = 0.4.

is retarded on the narrow side and we instead observe that the finger advances
ahead on the upper wider side of the annulus. On reducing the Stokes number
to St∗ = 0.01, buoyancy again dominates. Figure 9(b) shows the evolution of the
interfacial contour c̄ = 0.5. There is again slow transitory behaviour as eccentricity
and buoyancy compete, characterized by a transitory recirculatory zone (see figure 9c),
before eventually the steady-state profile is attained, see figure 9(d). Figure 10 shows
results of the same simulation but at e = 0.4. The unsteady fingering at St∗ = 0.05 is
now obvious (figure 10a), but again decreasing St∗ results in a steady travelling wave,
figure 10(b–d).

3.2. Light displacing fluids, b̃ > 0

Turning now to the situation where the displacing fluid is less dense, we first examine
Newtonian displacements with a mildly eccentric annulus. The primary difference
with the previous subsection is that now both buoyancy and eccentricity promote
stratification along the top (wide) side of the annulus. Only rheological differences
may be used to counter the tendency to finger along the wide side of the annulus. In
the absence of any positive viscosity difference, we must expect that the interface will
advance rapidly along the wide side, quickly becoming parallel with the annulus axis.
An example of this is shown in figure 11, with parameters κ1 = 0.25, κ2 = 1, a 10%
density difference, e = 0.2 and St∗ = 0.05 (Newtonian fluids).
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Figure 11. Newtonian displacement with negative buoyancy gradient in an eccentric annulus.
Parameters: St∗ = 0.05, e = 0.2, β = π/2, τY,k = 0, nk = 1, κ1 = 0.25, κ2 = 1, ρ1 = 0.9, ρ2 = 1.
(a) Contour c̄(φ, ξ, t) = 0.5 at time intervals �t = 0.5. (b) The moving-frame stream function
Φ(φ, ξ, t) at t = 10; contours are Φ = 0.05, 0.1, 0.15, 0.2, 0.25, 0.3. (c) As (b), but at t = 20.

With the viscosity difference of figure 11 reversed, the effect is very different, see
figure 12. The initial displacement advances along the wide side of the annulus, but
does not succeed in fully stratifying. Over intermediate time scales there again persists
a zone of counter-clockwise circulation, figure 12(b), which acts to partly steepen the
interface and then contracts to a steady-state profile, see figure 12(c). It appears that
this positive viscosity gradient (κ1 = 1, κ2 = 0.25) is sufficient to displace in a steady
state at e = 0.2.

With non-Newtonian fluids little is changed fundamentally: eccentricity and
buoyancy are destabilizing but for certain rheological combinations it is possible
to achieve a steady-state displacement. One example of this is shown in figure 13. The
results are qualitatively similar to that of figure 12. An initial acceleration along the
wide side is followed by a transitional motion of the interface via a slowly contracting
weak counter-clockwise rotation and finally the profile converges to a steady state at
longer times.

3.3. Summary

We have run a number of computations for both positive and negative buoyancy
differences, from which several of conclusions may be drawn. First, the same solution
types are found regardless of the sign of the buoyancy difference (steady front or
unsteady finger), and the form of approach to the steady state is also identical.
Where the density difference is positive (heavy fluids displace light fluids) buoyant
slumping and eccentricity compete, whereas for negative density differences they act
together. However, in both cases significant rheological differences between the fluids
can determine whether or not the displacement is steady.

From the two-dimensional simulations that we have run, we are in a position to at
least postulate what sufficient conditions for a steady-state should be. In a horizontal
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Figure 12. Newtonian displacement with negative buoyancy gradient in an eccentric annulus.
Parameters: St∗ = 0.05, e = 0.2, β = π/2, τY,k = 0, nk = 1, κ1 = 1, κ2 = 0.25, ρ1 = 0.9, ρ2 = 1.
(a) Contours c̄(φ, ξ, t) = 0.5 at time intervals �t = 0.5. (b) The moving frame stream function
Φ(φ, ξ, t) at t = 15.5, contours Φ = 0, 0.03, 0.06, 0.09, 0.12, 0.15. (c). The moving-frame
stream function Φ(φ, ξ − t, t) at t = 40, with the contour c̄(φ, ξ − t, t) = 0.5 (heavy line);
contours are Φ = 0.03, 0.06, 0.09, 0.12, 0.15.
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Figure 13. Non-Newtonian displacement with negative buoyancy gradient in an eccentric
annulus. As figure 12 but with τY,1 = 1, κ2 = 0.05.



308 M. Carrasco-Teja, I. A. Frigaard, B. R. Seymour and S. Storey

well displacement, under the Hele-Shaw assumptions of our model, buoyancy forces
act only azimuthally. These contribute to the axial momentum balance only through
the slope of the interface. As the interface elongates along the well the contribution
of the azimuthal buoyancy forces is diminished. The only exception to this would be
at the wide and narrow side of the annulus, where the interface may run perpendicular
to the annulus axis. However, the buoyancy force acts azimuthally with magnitude
proportional to sin πφ, and thus vanishes on the wide and narrow sides. Therefore,
we might postulate that a sufficient condition for the two-dimensional simulation
to have a steady-state displacement solution is that the corresponding iso-density
displacement has a steady state displacement. However, results such as those in
figure 10 contradict this statement.

Of key practical interest is to determine whether or not the displacement is
steady. Our two-dimensional computations are not ideal for this purpose for a
number of reasons. Some of these reasons are computational, as discussed below
in §3.4, and relate to computational times required to exhaustively explore a 10-
dimensional parameter space. More generically, when stable steady structures occur
transient solutions only converge at long times (often also related to the initial
conditions). In marginal cases separating stable and unstable states, convergence times
become infinite and transient simulations are frequently quite simply inappropriate
to determine marginal conditions with any accuracy. This motivates the development
of a semi-analytical approach, presented below in §4. In this approach we first reduce
the problem to one dimension, so that computational simulations are indeed feasible.
Second, we reduce the parametric dependence of the model from 10 dimensionless
parameters to eight. Finally, this simplified approach allows analytical determination
of conditions for steady-state displacements.

3.4. Computational issues

Finally, we mention some problems with the two-dimensional simulation method.
First, some spreading of the interface does occur. We start the computations with
a jump in c̄ across the interface, but a small diffuse region emerges immediately.
Although we have considered c̄ = 0.5 as the interface, this is arbitrary and any other
contour could be used, giving rise to some uncertainty in computed interface position.
The spreading is due partly to numerical diffusion, partly to dispersion and partly to
interpolation errors. The FCT scheme is reasonable in regard to numerical diffusion
but cannot eliminate this effect. We see that in the moving frame of reference there
are significant counter-current secondary flows close to the interface. These act to
amplify any spreading via dispersion, but the size of the effect is hard to quantify.
Similarly, it is necessary to provide closure functions for the physical properties of the
fluids. Here we have followed Bittleston et al. (2002) and used linear interpolation.
Effects of using different closure laws are unknown. An obvious solution to these
numerical issues would be to use an interface tracking method directly. We do this
below for a simplified model, but have not tried to use it with the two-dimensional
model.

Secondly, although by comparison to other problems routinely solved in fluid
mechanics, the computational load for a two-dimensional problem may seem low, it is
not so when yield stress fluids are involved (which is a situation of practical interest).
The Uzawa algorithm used to solve the augmented Lagrangian problem converges
relatively slowly and this must be repeated at each time step. Run times are still
several hours on a 2007 desktop PC. This is sufficient to dissuade us from extensive
explorations of parameter space. Linked to the above point, we may observe that
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many of the flows we have computed do have interfaces that extend significantly along
the annulus axis. Evidently, these elongated interfaces lead to larger computational
domains and thus slower computational times. The approach that we explore below
in §4 is an analytical effort to circumvent some of these difficulties. It might also
be possible to look at improved computational techniques, such as adaptive meshing
(note that much of the flow away from the front is one-dimensional), or implementing
a parallel algorithm. So far we have not investigated these approaches.

4. A lubrication model for gravitational spreading with |b̃| � 1

We have seen that both positive and negative b̃ can lead to both steady
travelling wave displacements and to unsteady displacements. Here we attempt to
provide a quantitative understanding of these phenomena through analysis of the
lubrication/thin-film limit, |b̃| � 1, which we derive below.

4.1. Lubrication model derivation

When |b̃| � 1 the buoyancy tends to dominate and causes the interface to elongate
in the axial direction. We adopt the interface tracking formulation of §2.1, and
introduce a small parameter ε = 1/|b̃| 	 1. We will consider only mechanically stable
configurations, i.e. if b̃ < 0 it is assumed that the displacing fluid elongates along the
bottom of the annulus (narrow side), and if b̃ > 0 the elongation is along the top
of the annulus (wide side). Only the model with b̃ < 0 is derived; b̃ > 0 is stated
afterwards.

We assume that |b̃| represents the length scale in the axial direction over which the
streamlines, interface and modified pressure gradient field are all pseudo-parallel, and
make the following assumptions.

(i) Streamlines are pseudo-parallel to the annulus axis: so that the main velocity
component is in the ξ -direction, and hence∣∣∣∣∣∂Ψ

∂ξ

∣∣∣∣∣ = O(ε),

∣∣∣∣∣∂Ψ

∂φ

∣∣∣∣∣ = O(1). (4.1)

(ii) Interface is pseudo-parallel to the annulus axis: i.e. is highly elongated in the
ξ -direction. Denoting the interface by φ = φi(ξ, t) this translates into∣∣∣∣∣∂φi

∂ξ

∣∣∣∣∣ = O(ε). (4.2)

(iii) Modified pressure gradient field: Sk has its main component in the φ-direction,
driving the flow axially:

|Sk,ξ | = O(ε), |Sk,φ | = O(1). (4.3)

Note that this follows directly from (i) and the definition of S in the case that the
fluids are yielded. Otherwise this is an additional assumption.

With the above assumptions, we re-scale axial length and time variables by

z = εξ, t̃ = εt. (4.4)

For the velocity and pressure we set

W = w, V = εv, P = εp, (4.5)

and write Ψ (φ, z) for the stream function as before. Note that V = −Ψz = O(1)
following this re-scaling.
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After some manipulation, see Pelipenko & Frigaard (2004c), the kinematic equation
for the interface φ = φi(z, t̃) becomes

∂

∂t̃

[∫ φi (z,̃t)

0

H (φ) dφ

]
+

∂

∂z
[Ψ (φ, z, t̃)|φ=φi (z,̃t)] = 0. (4.6)

The first term above is the time derivative of the volumetric interface position, Φi(z, t̃):

Φi(z, t̃) =

∫ φi (z,̃t)

0

H (φ) dφ = φi(z, t̃) +
e

π
sin πφi(z, t̃), (4.7)

i.e. Φi(z, t̃) represents the volume fraction of fluid 1 at depth z. The relationship
between φi and Φi is linear, so we may write φi = φi(Φi).

The components of Sk are given in terms of the pressure and gravitational
acceleration by

Sk,φ = −∂p

∂ξ
− ρk cos β

St∗ , Sk,ξ =
∂p

∂φ
− ρk sinβ sin πφ

St∗ .

The assumption that |Sk,ξ | = O(ε) implies that

1

ε

[
∂P

∂φ
− ρk sin β sin πφ

ρ1 − ρ2

]
= O(ε),

and we shall assume that β ∼ π/2 + O(ε), so that to O(ε2):

P (φ, z, t̃) =

⎧⎪⎨
⎪⎩

P (0, z, t̃) +
ρ2

π(ρ1 − ρ2)
[1 − cos πφ], φ ∈ [0, φi],

P (0, z, t̃) +
ρ2

π(ρ1 − ρ2)

[
1 − ρ1

ρ2

cos πφ
]

+
cos πφi

π
, φ ∈ (φi, 1].

(4.8)
We write cosβ = αε with α = O(1) so that

S1,φ = −∂P

∂z
(0, z, t̃) − ρ1α

ρ1 − ρ2

+
∂φi

∂z
sin πφi,

S2,φ = −∂P

∂z
(0, z, t̃) − ρ2α

ρ1 − ρ2

.

Note that S1,φ = S2,φ − (α − φi,z sin πφi) and that each Sk,φ is independent of φ.
In order to find the stream function at each (z, t̃), we need only find A(z, t̃) = S2,φ ,

which we do by using the boundary condition at φ = 1 and the closure laws for the
individual fluid phases:

1 = Ψ (1, z, t̃) =

∫ φi

0

∂Ψ

∂φ

∣∣∣∣
k=2

dφ +

∫ 1

φi

∂Ψ

∂φ

∣∣∣∣
k=1

dφ. (4.9)

To evaluate the integrands, from (2.9) we have in fluid 1

∂Ψ

∂φ

∣∣∣∣
k=1

=sgn(A−b)

⎧⎪⎪⎨
⎪⎪⎩

0, |A − b| � τ1,Y /H,

Hm1+2

κ
m1

1 (m1 + 2)
(|A−b|−τ1,Y /H )m1+1

|A − b|2
[
|A−b|+ τ1,Y /H

m1 + 1

]
,

|A − b| > τ1,Y /H,

(4.10)
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where b = α − φi,z sin πφi , and in fluid 2

∂Ψ

∂φ

∣∣∣∣
k=2

= sgn(A)

⎧⎪⎪⎨
⎪⎪⎩

0, |A| � τ2,Y /H,

Hm2+2

κ
m2

2 (m2 + 2)
(|A| − τ2,Y /H )m2+1

|A|2
[

|A| +
τ2,Y /H

m2 + 1

]
,

|A| > τ2,Y /H.

(4.11)

Both (4.10) and (4.11) are monotone with respect to A, and from this we can deduce
that (4.9) has a unique solution. For the general case, this solution must be determined
numerically.

Having found A, we may integrate to find Ψ . Replacing φi with φi(Φi), we see that
Ψ depends on (z, t̃) only via Φi(z, t̃) and b, which contains Φi(z, t̃) and Φi,z(z, t̃). The
value of the stream function at the interface is denoted by

q(Φi, b) = Ψ (φ, φi, b)|φ=φi (z,̃t) : b = α − φi,z sin πφi, φi = φi(Φi(z, t̃)). (4.12)

Using this notation, (4.6) yields an evolution equation for the propagation of the
volumetric interface position, Φi(z, t̃):

∂Φi

∂t̃
+

∂

∂z
q(Φi, b) = 0. (4.13)

4.2. Diffusive nature of (4.13)

Equation (4.13), with fixed constant b, is exactly the lubrication displacement flow
conservation law studied in Pelipenko & Frigaard (2004c). This is a first-order
quasi-linear, partial differential equation that admits a variety of different qualitative
behaviours, including shocks and travelling wave solutions. Note that b = α − φi,z

sin πφi and hence (4.13) is second order and can be written as

∂Φi

∂t̃
+

(
∂q

∂Φi

+
∂q

∂b

∂b

∂Φi

)
∂Φi

∂z
= −∂q

∂b

∂b

∂Φi,z

∂2Φi

∂z2
, (4.14)

where
∂b

∂Φi,z

= − sin πφi

1 + e cos πφi

< 0, Φi ∈ (0, 1).

Therefore (4.13) will be diffusive only if q is non-decreasing for all b. This is the
case, as might be expected physically, i.e. gravity should act to spread the interface
along the annulus. We expect that the effects of diffusion will be to smooth out
sharp changes in interface shape, e.g. the shocks found for the first-order model in
Pelipenko & Frigaard (2004c), but it is interesting that on wide and narrow sides of
the annulus the diffusion terms vanish.

Lemma 1. q(Φi, b) is non-decreasing for all b.

Proof. See Appendix B.

4.3. Steady travelling wave solutions

Probably the single most important feature of (4.13) to predict is whether or not
steady travelling wave solutions can be found, since in their absence it is likely that
the flow will stratify, implying the ineffectiveness of the displacement. Since horizontal
well sections are constructed to lie along the reservoir, failure of a horizontal cemented
section has a large impact on well productivity. We show that it is in fact possible
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to predict the conditions under which a steady travelling wave solution can be
found.

It is more convenient to work in a moving frame of reference and (due to the scaling
adopted) a steady travelling wave solution that occupies the entire annulus will move
with unit speed. Thus, we write x = z − t and seek a steady profile Φi = Φi(x). For
heavy fluids displacing light fluids (b̃ < 0), we expect an interface shape as illustrated
schematically in figure 2(a), so that Φi(x) is non-decreasing. Writing instead x = x(Φi)
for the steady state, we seek x(Φi) such that the following physical conditions are
satisfied:

x ′(0) = 0, x ′′(0) > 0,

x ′(1) = 0, x ′′(1) < 0,

x ′(Φi) > 0 Φi ∈ (0, 1).

⎫⎬
⎭ (4.15)

Substituting for Φi = Φi(x) in the evolution equation (4.13) we find

d

dx
[q

(
Φi, b(Φi, Φ

′
i)
)

− Φi] = 0,

and hence

q
(
Φi, b(Φi, Φ

′
i)
)

− Φi = 0 (4.16)

must be satisfied by Φi(x) (or x(Φi)). Since

b = α − φi,z sin πφi = α − sin πφi(Φi)

H (φi(Φi))
Φ ′

i(x) = α − sin πφi(Φi)

H (φi(Φi))x ′(Φi)
,

we see that equation (4.16) is in fact an algebraic equation for the derivative, x ′(Φi),
of x(Φi) with respect to Φi .

Evidently, we can integrate x ′(Φi) to give the steady-state shape provided that for all
Φi ∈ [0, 1] there is a b for which (4.16) is satisfied and for which the conditions (4.15)
on the physical shape of the interface are also satisfied. Since q(Φi, b) is continuous
with respect to both arguments, this suffices to give a steady-state shape.

Theorem 1. The condition that

q(Φi, α) � Φi for all Φi ∈ [0, 1] (4.17)

is a necessary and sufficient condition for the existence of a steady-state travelling wave

solution satisfying the conditions (4.15).

Proof. First recall from Lemma 1 that q(Φi, b) increases monotonically with respect
to b. Therefore, if Φi ∈ (0, 1), from (4.15) we observe that α > b. Additionally, as
Φi → 0

b → α − π

(1 + e)2x ′′(0)
+ O(Φi) < α

and as Φi → 1

b → α +
π

(1 − e)2x ′′(1)
+ O(Φi) < α.

Therefore b < α for all Φi ∈ [0, 1] and Lemma 1 implies that

q(Φi, b) � q(Φi, α) for all Φi ∈ [0, 1].

Thus, condition (4.17) is certainly a necessary condition to find a solution of (4.16).
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For sufficiency, let q(Φi, b) be given by (4.9)–(4.12) and suppose that (4.15) and
(4.17) are satisfied. We shall now find b < α such that q(Φi, b) = Φi . For fixed
Φi ∈ [0, 1] define

gL(Ã) =

∫ φi

0

∂Ψ /∂φ|2 dφ and gH (Ã) =

∫ 1

φi

∂Ψ /∂φ|1 dφ,

i.e. we use (4.11) with A replaced by Ã for gL(Ã), and (4.10) with A − b replaced by
Ã for gH (Ã). We note that ∂Ψ /∂φ in (4.10) and (4.11) increases continuously and
monotonically with the modified pressure gradient Ã, approaching ±∞ as Ã → ±∞.
This monotonicity transfers to gH and gL. Using the monotonicity of gH and gL, for
any fixed α it follows that there is an Ã such that

gL(Ã) + gH (Ã − α) = 1.

This is the procedure for defining q(Φi, α) = gL(Ã) and, since (4.17) is satisfied,

gL(Ã) � Φi and gH (Ã − α) � 1 − Φi.

Again from the monotonicity of gH and gL, it follows that we can find AL < Ã and
AH > Ã − α such that

gL(AL) = Φi and gH (AH ) = 1 − Φi. (4.18)

Now let b be defined by b = AL − AH < α. Therefore

gL(AL) + gH (AL − b) = 1,

and by setting gL(AL) = q(Φi, b) we have a solution to (4.16).

To understand the physical meaning of Theorem 1, note that q(Φi, b) is the
volumetric flux through the upper layer of light fluid and q(Φi, α) is the volumetric
flux through the upper layer of light fluid, neglecting the effects of the interface slope.
Condition (4.16) defines the distribution of volumetric flux for which the interface
speed is everywhere identically equal to the mean speed of the flow. As the slope of
the interface is positive and q increases with b, we can deduce that q decreases as the
slope is increased. When condition (4.17) is satisfied, this implies that the flux is too
large to satisfy (4.16). However, by increasing the slope of the interface from zero we
can find a b for which (4.16) is satisfied. This constructive procedure gives the slope
of the steady-state shape, as well as the conditions for there to be a steady state.

4.3.1. Conditions on the consistency ratio

The procedure in the above theorem can be made constructive and yields conditions
on the consistency ratio, κ1/κ2, that need to be satisfied for a steady state to exist.
First note that for a given modified pressure gradient Ã, (4.10) and (4.11) can be
rewritten as

∂Ψ

∂φ
(Ã) = sgn(Ã)

|Ã|m
κm(m + 2)

F+(B, m, H (φ)), (4.19)

where

F+(B, m, H ) =

{
0, 1 � B/H,

Hm+2(1 − B/H )m+1(1 + m + B/H )
m + 1

, 1 > B/H.
(4.20)

B = τY /|Ã| and in fluid k we use m = mk , τY = τY,k , κ = κk . The only dependence on
φ enters through the function F+(B, m, H ).
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For given Φi define AL and AH as

A
m2

L

κ
m2

2 (m2 + 2)
IL = Φi and

A
m1

H

κ
m1

1 (m1 + 2)
IH = 1 − Φi, (4.21)

where

IL =

∫ φi

0

F+(B2, m2, H (φ)) dφ and IH =

∫ 1

φi

F+(B1, m1, H (φ)) dφ, (4.22)

with B1 = τY,1/AL and B2 = τY, 2/AH . Thus if we set

b(Φi) =

(
(m2 + 2)Φi

IL

)n2

κ2 −
(

(m1 + 2)(1 − Φi)

IH

)n1

κ1, (4.23)

we have that q(Φi, b) = Φi . Using the definition of b from (4.12)

x ′(Φi) =
sin πφi(Φi)

H (Φi) (α − b(Φi))
, (4.24)

and we note that to be physically plausible we require x ′(Φi) > 0 for Φi ∈ (0, 1), see
the conditions (4.15). This implies that

κ1

κ2

> max
Φi∈[0,1]

FHL (Φi; e, n1, n2, B1, B2, α/κ2), (4.25)

where

FHL =

(
(m2 + 2)Φi

IL

)n2

(
(m1 + 2)(1 − Φi)

IH

)n1
− α

κ2

1(
(m1 + 2)(1 − Φi)

IH

)n1
, (4.26)

and recall that mk = 1/nk . When condition (4.25) is satisfied, the shape of the steady
travelling wave can be found by integrating (4.24).

4.4. Light displacing fluids, b̃ > 0

When the displacing fluid is lighter than the displaced fluid we expect the configuration
illustrated schematically in figure 2(b) to result, and again it is possible to derive a
lubrication displacement model. The volumetric interface position, Φi(z, t̃), again
evolves according to

∂Φi

∂t̃
+

∂

∂z
q(Φi, b) = 0, (4.27)

where now

q(Φi, b) =

∫ φi

0

∂Ψ

∂φ

∣∣∣∣
k=1

dφ,

and this is computed in a similar way. The φ components of S in each fluid are
constants satisfying S2,φ = S1,φ − b. Defining S1,φ = A, equations (4.10) and (4.11) are
replaced by

∂Ψ

∂φ

∣∣∣∣
k=1

= sgn(A)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |A| � τ1,Y /H,

Hm1+2

κ
m1

1 (m1 + 2)

(|A| − τ1,Y /H )m1+1

|A|2
[

|A| +
τ1,Y /H

m1 + 1

]
,

|A| > τ1,Y /H,

(4.28)
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in fluid 1, and in fluid 2 by

∂Ψ

∂φ

∣∣∣∣
k=2

= sgn(A−b)

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

0, |A − b| � τ2,Y /H,

Hm2+2

κ
m2

2 (m2 + 2)

(|A − b| − τ2,Y /H )m2+1

|A − b|2
[

|A − b| +
τ2,Y /H

m2 + 1

]
,

|A − b| > τ2,Y /H,

(4.29)
where b is still given by

b = α − φi,z sin πφi.

The modified pressure gradient A is computed from

1 = Ψ (1, z, t̃) =

∫ φi

0

∂Ψ

∂φ

∣∣∣∣
k=1

dφ +

∫ 1

φi

∂Ψ

∂φ

∣∣∣∣
k=2

dφ. (4.30)

4.4.1. Diffusive spreading and steady-state profiles

As before, we can show that q(Φi, b) is non-decreasing with b and that (4.27) is
diffusive in nature. The methodology is similar to that used previously. The profile of
the interface when the displacing fluid is lighter is expected to satisfy

x ′(0) = 0, x ′′(0) < 0,

x ′(1) = 0, x ′′(1) > 0,

x ′(Φi) < 0 Φi ∈ (0, 1),

⎫⎬
⎭ (4.31)

which replaces (4.15). Under these assumptions, a necessary and sufficient condition
for a steady state is that

q(Φi, α) � Φi. (4.32)

This is satisfied if
κ1

κ2

> max
φi∈[0,1]

FLH (φi; e, n1, n2, B1, B2, α/κ2), (4.33)

where

FLH =

(
(m2 + 2)(1 − Φi)

IH

)n2

(
(m1 + 2)Φi

IL

)n1
+

α

κ2

1(
(m1 + 2)Φi

IL

)n1
. (4.34)

In this case IL and IH are defined as

IH =

∫ 1

φi

F+(B2, m2, H (φ)) dφ (4.35)

IL =

∫ φi

0

F+(B1, m1, H (φ)) dφ. (4.36)

Note that in this case an increase in α requires an increase in the consistency ratio.

4.5. Parametric results

Here we explore conditions (4.25) and (4.33) that dictate whether or not a steady
travelling wave shape can be found. Note that the procedure leading to (4.25) and
(4.33) is constructive and is fully explicit in the case that the fluids have no yield
stress. When the fluids have a yield stress the same procedure can be followed, but
since Bk depends on the modified pressure gradients this relationship is implicit.
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Figure 14. Conditions required for two Newtonian fluids to have a steady-state displacement:
(a) HL - heavy fluid displacing light fluid, (4.26); (b) LH - light fluid displacing heavy fluid,
(4.34). The curves are: α/κ2 = −0.6 (�), − 0.3 (�), 0 (�), 0.3 (�), 0.6 (�). The consistency
ratio must lie above the curve to have a steady travelling wave displacement.

4.5.1. Newtonian fluids

If the two fluids are Newtonian and the fluid 1 is heavier, the flux function q is

qHL(Φi, b) =

(
3κ1 + b

∫ 1

φi

H 3(φ)dφ

) ∫ φi

0

H 3(φ)dφ

3κ2

∫ 1

φi

H 3(φ)dφ + 3κ1

∫ φi

0

H 3(φ)dφ

. (4.37)

When the displacing fluid is lighter this expression becomes

qLH (Φi, b) =

(
3κ2 + b

∫ 1

φi

H 3(φ)dφ

) ∫ φi

0

H 3(φ)dφ

3κ2

∫ φi

0

H 3(φ)dφ + 3κ1

∫ 1

φi

H 3(φ)dφ

. (4.38)

The conditions required to have a steady state, (4.26) and (4.34), are plotted for
different angles α in figure 14. Note that a positive angle helps the heavy–light (HL)
displacement, while it worsens the light–heavy (LH) displacement.

In figure 15 the effects on the steady-state shape of increasing the eccentricity at
fixed consistency ratio are illustrated. It is interesting to note that increasing the
eccentricity has a different effect in an HL displacement than an LH displacement.
In the former the density difference promotes slumping along the bottom of the well
and an increase in eccentricity counters this effect by constricting the area. Increasing
eccentricity acts to elongate the interface for the LH displacement.

The effects on the steady-state shape of increasing the consistency ratio at fixed
eccentricity are shown in figure 16 for e = 0.1. In this case the consistency
ratio threshold for the HL displacement is κ1/κ2 = 0.8388, while for the the LH
displacement it is κ1/κ2 = 1.2959. In both cases the consistency ratios explored are
above the threshold values and we can observe that increasing the consistency ratio
tends to reduce the extension of the interface along the annulus. As the threshold
value is approached the steady states elongate towards infinity, see e.g. figure 16(b).
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Figure 15. The effects on the steady-state shape of increasing the eccentricity at fixed
consistency ratio for two Newtonian fluids: (a) HL displacement κ1/κ2 = 1; (b) LH
displacement κ1/κ2 = 2.02. Eccentricities: e = 0.05 (�), 0.1 (�), 0.15 (�), 0.2 (�); horizontal
well α/κ2 = 0.
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Figure 16. The effects on the steady-state shape of increasing the consistency ratio at fixed
eccentricity, e = 0.1, for 2 Newtonian fluids: (a) HL displacement; (b) LH displacement.
Consistency ratios: κ1/κ2 = 1.35 (�), 1.4 (�), 1.45 (�), 1.5 (�); horizontal well, α/κ2 = 0.

4.5.2. Power-law fluids

We investigate the effects of shear-thinning on steady displacements only for
displacements in strictly horizontal wells, α = 0. Figures 17 and 18 show the effects of
varying power-law indices on the threshold consistency ratio. Figure 17 fixes n1 = 0.5
and explores the effect of increasing eccentricity for different n2. For HL displacements
the threshold is either decreasing with e or has a minimum (see also the Newtonian
case in figure 14), i.e. a little eccentricity helps the displacement countering the effects
of buoyancy.
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Figure 17. Conditions required to have a steady-state displacement at fixed n1 = 0.5, for two
power-law fluids: (a) HL displacement, (4.26); (b) LH displacement, (4.34). The curves are:
n2 = 0.2 (�), 0.4 (�), 0.6 (�), 0.8 (�), 1.0 (�). The consistency ratio must lie above the curve
to have a steady displacement.
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Figure 18. Conditions required to have a steady-state displacement at fixed n2 = 0.5, for two
power-law fluids: (a) HL displacement, (4.26); (b) LH displacement, (4.34). The curves are:
n1 = 0.2 (�), 0.4 (�), 0.6 (�), 0.8 (�), 1.0 (�). The consistency ratio must lie above the curve
to have a steady displacement.

For LH displacements the consistency ratio increases with e. On increasing n2,
the power-law index of the displaced fluid in both cases increases the consistency
ratio threshold. Essentially the displaced fluid is becoming more viscous. In general,
comparing figures 17(a) and 17(b), the LH displacement requires a higher consistency
ratio than the HL displacement in order to become steady. The results shown in
figures 18 are qualitatively similar with respect to variations in e. Now, as n1 is
increased (for fixed n2), the consistency ratio threshold drops. Again this can simply
be interpreted as an increase in viscosity ratio.

The shape of the steady states is explored in figures 19 and 20. We fix n1 = 0.5, n2 =1
and explore the effects of changing consistency ratio and eccentricity. Essentially, the
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Figure 19. The effects on the steady-state shape of increasing the consistency ratio at
fixed eccentricity and power-law indices, e = 0.1, n1 = 0.5, n2 = 1: (a) HL displacement:
threshold κ1/κ2 = 1.2637; (b) LH displacement: threshold κ1/κ2 = 1.9154. Consistency ratios:
κ1/κ2 = 1.95 (�), 2 (�), 2.05 (�), 2.1 (�); horizontal well, α/κ2 = 0.
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Figure 20. The effects on the steady-state shape of increasing the eccentricity at fixed
consistency ratio and power-law indices, n1 = 0.5, n2 = 1: (a) HL displacement, κ1/κ2 = 1.6;
(b) LH displacement, κ1/κ2 = 2.97. Eccentricities: e = 0.05 (�), 0.1 (�), 0.15 (�), 0.2 (�);
horizontal well α/κ2 = 0.

steady-state shape becomes progressively elongated as the threshold is approached.
The results for n1 = 1, n2 = 0.5 are analogous.

4.5.3. Yield-stress fluids

For yield-stress fluids we cannot get a closed-form expression for a critical
consistency ratio, as B1 and B2 depend on the modified pressure gradient. Instead,
we follow the procedure of Theorem 1. For example, for a HL displacement at each
Φi we find AL(Φi) and AH (Φi) from (4.18). Provided that AL(Φi) − AH (Φi) < α for
all Φi ∈ [0, 1] we can construct a steady-state shape. The critical condition is when

max
Φi∈[0,1]

{AL(Φi) − AH (Φi)} = α. (4.39)
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Figure 21. Examples of AL(Φi) and AH (Φi) for parameters τY,1 = 0.4, κ1 = 0.1, n1 = 0.5,
τY,2 = 0, κ2 = 1, n2 = 1, α = 0: (a) e = 0.1, steady state; (b) e = 0.3, no steady state. AH (Φi)
corresponds to the broken line.

0 0.5 1.0 1.5

2

4

6

0 0.5 1.0 1.5

0.5

1.0

1.5

2.0

2.5

τY, 1

τY, 2 τY, 2

(a) (b)

Figure 22. Conditions required to have a steady-state displacement at fixed: n1 = 0.5,
n2 = 0.8, e = 0.2: (a) HL displacement (4.26); (b) LH displacement:(4.34). The curves
are: κ1/κ2 = 0.5 (�), 1.0 (�), 1.5 (�), 2.0 (�). The yield stress τY,1 must lie above the curve
to have a steady displacement. Horizontal displacement α/κ2 = 0.

An analogous procedure is followed for LH displacements.
Two example computations of AL(Φi) and AH (Φi) are shown in figure 21. We may

observe that in each case the functions AL(Φi) and AH (Φi) are monotone with respect
to Φi . For the parameters of figure 21(a) it is possible to compute a steady-state shape,
but for the parameters of figure 21(b) it is not. Evidently, computing the threshold
in this way is not very efficient. However, figure 21 shows that the critical conditions
may be met at an intermediate Φi , and therefore there does not appear to be any
shortcut.

Figure 22 shows the conditions on τY,1 and τY,2 required in order to have a steady-
state displacement, for parameters that are fixed otherwise. It is interesting to note
that the marginal curves in the (τY,1, τY,2)-plane are nearly linear. Example steady-state
shapes are shown in figure 23.
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Figure 23. The effects on the steady-state shape of increasing the yield stress of the displacing
fluid. n1 = 0.5, n2 = 0.8, e = 0.2, τY,2 = 0.5: (a) HL displacement, α/κ2 = 1.5 (4.26); (b) LH
displacement, α/κ2 = 3.0 (4.34). The curves are: τY,1 = 0 (�), 0.25 (�), 0.5 (�), 0.75 (�).
Horizontal displacement α/κ2 = 0

5. Discussion and summary
We have presented an analysis of displacement flows in horizontal eccentric

annuli, in the Hele-Shaw limit, using two complementary models. Using a fully
two-dimensional model and computational simulation we have studied a range of
displacements involving either HL or LH fluid combinations. The role of density
difference appears slightly different depending on whether the displacement is HL or
LH. In the former case, density difference and eccentricity compete, so that there is
often a threshold in the (St∗, e)-plane delineating steady and unsteady displacements.
In LH displacement both eccentricity and buoyancy act to accentuate unsteadiness
and stratification. However, in both cases we have seen that these flows may either
stratify or displace in steady state.

For long computational domains, the two-dimensional model is less effective and
more time consuming. This has motivated derivation of a one-dimensional lubrication-
style displacement model. Interestingly, in this model we are able to decouple the
effects of buoyancy from those of eccentricity and fluid rheology. For this simplified
model we were able to give necessary and sufficient conditions for there to be
a steady-state displacement, and have explored variations in the results with the
main dimensionless parameters. In this model, fluid rheology and eccentricity alone
determine whether or not there may be a steady state. The buoyancy force translates
simply into an axial length scale for the slumped propagating steady interface, i.e. a
larger density difference gives a longer axial extension to the steady state. We have
presented the results for Newtonian and power-law fluids in terms of the ratio of
consistencies of the two fluids: κ1/κ2. This must exceed a certain critical threshold in
order for there to be a steady state. Above the threshold, steady-state shapes vary
significantly with the other rheological parameters. The variation is fairly intuitive,
i.e. as the displacing fluid is made more viscous the axial extent of the steady states
decreases. Increasing eccentricity generally results in longer steady states. As the
critical threshold is approached, the axial extent of the steady state grows towards
infinity.
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Figure 24. Examples of convergence to the steady-state profile for the lubrication
displacement model. Parameters are: e = 0.2, τY,1 = 0, τY,2 = 0, n1 = 0.8, n2 = 0.7, α/κ2 = 0.
(a) HL displacement, κ1/κ2 = 0.8; (b) LH displacement, κ1/κ2 = 1.8. Both examples have
converged after approximately t = 6. In the figures, + is the steady-state profile, · the initial
condition and the solid lines are transient profiles, evenly spaced in time.

5.1. Steady state stability

A question that is unanswered concerns the stability of the steady states. In the
two-dimensional simulations, we only observe steady-state solutions that are stable,
since they are identified via a transient computation. For the lubrication model we
have a semi-analytic expression for the steady-state shape, but a priori there is no
reason to expect that these shapes are stable. Nevertheless, numerical simulations
with the lubrication model do indicate that the steady states are stable. An example
of one such computation is shown in figure 24.

We have not been able to develop any simple stability analysis that predicts the
stability of the steady states, but it appears that they are generally stable and perhaps
globally so. This appears strange at first glance, in particular when one considers
the moving-frame streamline pattern, Φ(x, φ), for a steady-state displacement, as
shown schematically in figure 25(a), (see also earlier results from the two-dimensional
simulation). The steady state is a streamline Φ(x, φ) = 0 that connects wide and
narrow sides of the annulus. The Hele-Shaw formulation allows a discontinuity in
tangential velocity across an interface, and we see that the steady state has fluids
1 and 2 are counter-current on either side of it. Since the interface is advected by
the velocity field, this configuration intuitively appears to be unstable to any small
perturbation of the interface.

However, the above conclusion is based on the false assumption that the streamline
field is not also perturbed by the interface perturbation, i.e. the transient interface
is advected by the velocity field defined by the moving-frame streamfunction: Φ =
Φ(x, φ, t, Φi(x, t)). From the two-dimensional simulations, we have seen that the
approach to the steady state is characterized by the existence of a slowly counter-
rotating zone about the interface, see figure 25(b), which contracts as the steady
state is approached. With the streamlines and interface as in figure 25(b), we can see
that the interface will remain within the circulatory region, with the two endpoints
approaching points A and B, which are stable, and the interface being suspended
between these two points. The steady-state streamline field is the limiting case in
which such a (stabilizing) recirculation zone collapses to a line. The above appears to



Stratification and travelling waves in narrow eccentric annuli 323

Fluid 2Fluid 1(a)

(b)

x
φ = 0

φ = 1

φ = 0

φ = 1

Fluid 2Fluid 1

x

A

B

Figure 25. (a) Schematic of the streamlines for, a steady state and (b) when close to the
steady state. The interface is shown schematically as the thick dotted line.

be the mechanism by which steady states are stable. This type of stability is likely to
be nonlinear, but it is unclear if it is global.

5.2. Industrial implications

From the industrial perspective, the results of the paper are slightly counter-intuitive
but have largely positive implications. They also fill a large gap in industrial
understanding of these flows, where there is essentially no published analysis of
the displacement mechanics. The three key contributions of the work are as follows.

(a) Eccentricity and density difference play the dominant roles in vertical annulus
displacements. It has long been thought that in horizontal annuli density differences
must be detrimental to a good displacement. We see that this is not entirely the
case. In fact (at least in the lubrication limit), whether or not there is steady-state
displacement in a horizontal well does not appear to be dictated by the density of the
fluids. Rheology plays the dominant role in this question, regardless of the density
difference.

(b) On the other hand, density difference does affect the length of the steadystate
displacement profile, scaling linearly with density difference (divided by Stokes
number). This scaling is evident in results from the two-dimensional computations
(compare e.g. figures 6–8), and is implicit in the scaling adopted for the lubrication
model. For two Newtonian fluids the Stokes number captures all the effects of pump
flow rate, i.e. increasing Q̂ reduces St∗ in proportion to 1/Q̂. Thus, density difference
and flow rate act counter to one another in determining the length of the displacement
profile. For non-Newtonian fluid displacements, the flow rate affects the dimensionless
rheological parameters so that it is harder to assess effects of flow rate.

(c) Criteria for the existence of a steady-state displacement have been developed
and presented as either a critical consistency ratio, or other thresholds. It is relatively
simple/quick to compute these criteria and this could easily be included as part of a
design process. Given the apparent stability of these solutions, they are obviously of
industrial interest.

Apart from the semi-analytical expressions given, which need minimal computing
to evaluate, it would be of use to give some clear ‘rules’ that may be followed in
industrial design. In this context, the construction leading to figure 21 is useful. For
the HL-displacement, AL(Φi) represents the pressure gradient required to move the
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light fluid at mean speed through a duct consisting only of light fluid in the section
φ ∈ [0, Φi]. Similarly, AH (Φi) represents the pressure gradient required to move the
heavy fluid at mean speed through a duct consisting only of heavy fluid in the section
φ ∈ [1 − Φi, 1]. Conditions for which there can be no steady state are given (for
α = 0) by when AL(Φi) and AH (Φi) intersect. Sufficient conditions for this may be
stated in terms of single-fluid hydraulic quantities as follows.

Theorem 2. For a displacement in a horizontal well, there will be no steady-state
displacement if either of the following two sets of conditions are satisfied.

(a) �PL,W < �P H and �P L > �PH,N ;
(b) �PL,W > �P H and �P L < �PH,N .

Here �PL,W denotes the frictional pressure drop generated when pumping the light
(L) fluid through a concentric annulus of the same gap width as the wide (W) side at
the imposed mean velocity; �P H denotes the frictional pressure drop generated when
pumping the heavy (H) fluid through the eccentric annulus as the mean imposed
speed; �P L denotes the frictional pressure drop generated when pumping the light
(L) fluid through the eccentric annulus at the mean imposed speed; �PH,N denotes
the frictional pressure drop generated when pumping the heavy (H) fluid through a
concentric annulus of the same gap width as the narrow (N) side at the imposed
mean velocity.

Finally, when we do not have a steady-state displacement, or when the displacement
front is steady but elongated, the flow streamlines are approximately pseudo-parallel.
The stability of this type of parallel flow, within the Hele-Shaw context, has been
recently studied in Moyers-Gonzalez & Frigaard (2007a, b). The results are too
complex to summarize, but it is found that many such parallel flows are linearly
unstable. Therefore, although potentially problematic from the industrial perspective,
instability and subsequent mixing of the fluids azimuthally may make even these
displacements acceptable, i.e. the mixing may prevent development of a long finger
on the wide side. Equally, we have not considered situations in which a finger
develops that is mechanically unstable (i.e. heavy fluid over light fluid). Although
possible in our Hele-Shaw model, such configurations are likely to destabilize (again
see Moyers-Gonzalez & Frigaard 2007a, b) for instability of the parallel flow).
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supported financially by Schlumberger and NSERC through CRD project 245434 and
through Strategic Project Grant 306682-04. This support is gratefully acknowledged.
We thank Mr Sardar Malekmohammadi for providing figure 3. We thank the referees
for their constructive comments.

Appendix A. Model of the Flow of a Herschel–Bulkley Fluid
For a complete model derivation the reader is referred to Bittleston et al. (2002).

In outline, we use classical Hele-Shaw scaling arguments to simplify the momentum
equations to the following reduced shear flow:

∂p

∂φ
=

∂

∂y
τφy + gφ and

∂p

∂ξ
=

∂

∂y
τξy + gξ ,

where y denotes a normalized annular gap coordinate, (v, w) are the azimuthal
and axial velocity components, p is the pressure and (gφ, gξ ) denotes the scaled
gravitational acceleration vector. The fluid rheology is assumed to be that of a
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Herschel–Bulkley fluid:

τij = (κγ̇ n−1 + τY /γ̇ )γ̇ij ⇔ τ > τY ; γ̇ = 0 ⇔ τ � τY .

After scaling only the leading-order shear stress and strain rate components (φy and
ξy) are considered in the rheological law. The rheological parameters are defined as
functions of the base fluid parameters and fluid concentration. It follows that the
gap-averaged velocity flows in the direction of the modified pressure gradient,(

− ∂p

∂φ
+ gφ, −∂p

∂ξ
+ gξ

)

and by orienting in the direction of this flow we may compute the relation (2.9)
between mean flow rate and modified pressure gradient by solving a one-dimensional
flow problem across the annular gap. Cross-differentiation to eliminate the pressure
results in (2.4). For example, for a Newtonian fluid we recover the familiar S =
3κ∇Ψ/H 3, and (2.4) is simply a linear elliptic equation driven by the buoyancy
gradient and imposed flow rate.

Appendix B. Proof of Lemma 1

Proof. For brevity, let us write u(φ) = Ψ (φ, z, t) , u′(φ) = ∂Ψ /∂φ, and observe that
u(φi(Φi)) = q(Φi, b). We proceed formally by assuming that u ∈ V, where V is a
suitable function space for what follows. (Following Pelipenko & Frigaard (2004a)
we can expect that u ∈ W 1,p([0, 1]) with p = min{1 + n1, 1 + n2}. However, their
results are for a general two-dimensional flow, whereas here the base flows solved
to give the lubrication model are one-dimensional. It is thus likely that the solution
is piecewise C1 (or smoother) and hence H 1([0, 1]) could be used.) Note that u(φ)
satisfies boundary conditions u(0) = 0 and u(1) = 1. We denote by V0 the subspace of
V containing all functions w(φ) ∈ V that satisfy homogeneous boundary conditions:
w(0) = w(1) = 0. Then if u is the stream function solution, any other (test) solution
v ∈ V can be written as

v = u + w, for some w ∈ V0.

For v ∈ V, we multiply the modified pressure gradients Sk,φ by (u−v)′ and integrate
over φ ∈ [0, 1]. First, by using the definition of A and b we arrive at∫ φi

0

(v − u)′S2,φ dφ +

∫ 1

φi

(v − u)′S1,φ dφ =

∫ φi

0

(v − u)′A dφ +

∫ 1

φi

(v − u)′(A − b) dφ

= b (v(φi) − u(φi)) . (B 1)

Considering first fluid 2, if fluid 2 is yielded we can use equation (2.7) directly to give∫ φi

0

(v − u)′S2,φ dφ =

∫ φi

0

(
χ2 + τ2,y/H

|u′|

)
(v − u)′u′ dφ

�

∫ φi

0

χ2

|u′| (v − u)′u′ dφ +

∫ φi

0

τ2,y

H

(
|v′| − |u′|

)
dφ (B 2)

with the last step following from the Cauchy–Schwarz inequality. Note that when
unyielded we have that |S2,φ | � τ2,y/H , u′ = 0 and χ2(|u′|) → 0 like |u′|1/(1+1/n2) (see
Pelipenko & Frigaard (2004a)). Therefore, inequality (B 2) is valid also if fluid 2 is
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unyielded. We may write a similar inequality for fluid 1:∫ 1

φi

(v − u)′S1,φ dφ �

∫ 1

φi

χ1

|u′| (v − u)′u′ dφ +

∫ 1

φi

τ1,y

H

(
|v′| − |u′|

)
dφ,

and combining with (B 1):

b (v(φi) − u(φi)) �

∫ φi

0

χ2

|u′| (v − u)′u′ dφ +

∫ φi

0

τ2,y

H

(
|v′| − |u′|

)
dφ

+

∫ 1

φi

χ1

|u′| (v − u)′u′ dφ +

∫ 1

φi

τ1,y

H

(
|v′| − |u′|

)
dφ. (B 3)

Now suppose that, for fixed Φi , the solution u1 corresponds to b = b1 and the
solution u2 corresponds to b = b2. It is apparent that u2 is a test solution for u1 and
vice versa. Inserting each into (B 3) and summing gives

(b1 − b2) (u2(φi) − u1(φi)) �

∫ φi

0

χ2

|u′
1| (u2 − u1)

′u′
1 dφ +

∫ φi

0

χ2

|u′
2| (u1 − u2)

′u′
2 dφ

+

∫ 1

φi

χ1

|u′
1| (u2 − u1)

′u′
1 dφ +

∫ 1

φi

χ1

|u′
2| (u1 − u2)

′u′
2 dφ,

� 0. (B 4)

The last statement follows from the general properties of convex functionals (see
e.g. proposition 5.4 on page 25 of Ekeland & Témam 1976). In Pelipenko & Frigaard
(2004a) it is shown that if χk is defined implicitly by equation (2.9) then the functional

Fk(x) =

∫ |x|2

0

χk(s
1/2)

2s1/2
ds (B 5)

is Gateaux-differentiable and strictly convex, i.e. from this it follows that∫ φi

0

χ2

|u′
1| (u2 − u1)

′u′
1 dφ �

∫ φi

0

F2(u2) − F2(u1) dφ,

and the various expressions on the right-hand side of (B 4) cancel out.
Therefore we have demonstrated that:

(b2 − b1) (u2(φi) − u1(φi)) = (b2 − b1) (q(Φi, b2) − q(Φi, b1)) � 0, (B 6)

and q (Φi, b) is non-decreasing with respect to b.
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